Ciphers Over “Strange” Domains

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

U Herbert Wertheim
College of Engineering

Department of Computer & Information
Science & Engineering

UNIVERSITY of FLORIDA

Toda
Y In-place encryption of CC database @

1234 Sb78 987k 5432
[—

1234 5678 9876 5432 »| Encrypt > 4417 1234 5678 9112

Thursday

Circumvention of nation-state internet censorship

“HTTP: ... free+speech+democracy ...”

“Looks benign,
let it pass”.

TCP/IP| ciphertext payload

>| Encrypt

Deep-packet inspection (DPI)

Blockcipher basics

Traditional blockcipher syntax E:{0,1}* x {0,1}" — {0,1}" for fixed k,n > 0
where VK € {0,1}*, E(K,-) is a bijection

"function family” viewpoint {Er:1{0,1}" = {0,1}" | K € {0, 1}k}
where Ex = E(K,-)

PRP-security notion

7 sampled uniformly

_—No efficient test can
f distinguish these

Ex sampled from function
family by picking a key K

Perm(n)
(All permutations over {0,1}")

Turning an n-bit BC into an (n-1)-bit BC

n bits n bits

n-1 bits n-1 bits
/

4 > EK 7

Turning an n-bit BC into an (n-1)-bit BC

n bits n bits

n-1 bits
/

/

ldea #1: truncation!

Ex(X) = (n—1) LSB of Ex(X)

>

n-1 bits

Turning an n-bit BC into an (n-1)-bit BC

n bits n bits

n-1 bits
/

/

ldea #1: truncation!

Ex(X)=(n—1)LSB of Ex(0|| X)

>

n-1 bits

Turning an n-bit BC into an (n-1)-bit BC

n bits n bits

n-1 bits
/

/

ldea #1: truncation!

Ex(X)=(n—1)LSB of Ex(0|| X)

— A

E N (Y) How do we invert?

>

n-1 bits

Turning an n-bit BC into an (n-1)-bit BC

n bits n bits

n-1 bits n-1 bits
/

4 > EK 7

ldea #1: truncation!
Ex(X)=(n—1)LSB of Ex(0|| X)
EZ'(Y)= if EZN0]|Y) = 0] X, return X; otherwise Ex'(1]|Y) = 0] X, return X

Turning an n-bit BC into an (n-1)-bit BC

n bits n bits

n-1 bits n-1 bits
/

7 EK 7

ldea #1: truncation!
Ex(X)=(n—1)LSB of Ex(0|| X)
EZ'(Y)= if EZN0]|Y) = 0] X, return X; otherwise Ex'(1]|Y) = 0] X, return X

Does it work?!

Turning an n-bit BC into an (n-1)-bit BC

= (n—1) LSB of Ex (0| X)
= if E2Y(0]|Y) = 0| X, return X; otherwise E.'(1||Y) = 0| X, return X

Let’s consider a
simple example, n=2

Ew: 00— 01
01 =11 Er: 01

10 — 10
1—1

11 — 00

Turning an n-bit BC into an (n-m)-bit BC

U Y If U=0™ then return Y

Turning an n-bit BC into an (n-m)-bit BC

U Y If U=0™ then return Y

Turning an n-bit BC into an (n-m)-bit BC

U Y If U=0™ then return Y

"Cycle Walking”

Zy O™ lX o x
Fo \
1 */
1
EK
1
1
EK

"Cycle Walking”

Zo Q0™ X
|

EK
—
O

EK
—
]

EK

"Cycle Walking”

Zo 0™ X
l /Z.Oz\(’m"’f
EK -_ o Zl
[\.J
7 =
l Expected # of steps < 2m
£ K
|
22

"Cycle Walking”

Expected # of steps <2m (in fact, Chernoff-like bounds show #steps close to
expectation with overwhelming probability)

Security? AdV%rp(t, q) < AdviLP(t+ O(q2™),q2™) (with overwhelming probability)

Clearly, this method is useful only if
m is small, i.e. (n-m) is “close” to n

What about when you want to shrink
the domain a lot?

Say you want a 3-bit BC

<k> = encoding of integer
k as an n-bit string

<0> <1> <2> <3> <7>
1. Encipher the entire l l l l l
3-bit domain Eq Ex Ex Eq £
| | | | |
Yo Y, Y, Y, Y,

What about when you want to shrink
the domain a lot?

Say you want a 3-bit BC

<0> <1> <2> <3>
1. Encipher the entire l l l l
3-bit domain Ee E. E, 5
l | | l
Yo Y, Y, Y,

2. Sort the resulting

n-bit values Y, <Y, <Ys <Yy <Y<Yy <Y, <Y

<k> = encoding of integer
k as an n-bit string

</>

What about when you want to shrink
the domain a lot?

Say you want a 3-bit BC

<k> = encoding of integer
k as an n-bit string

<0> <1> <2> <3> <7>
1. Encipher the entire l l l l l
3-bit domain Eq Ex Ex Eq £
| | | | |
Yo Y, Y, Y, Y,

2. Sort the resulting

n-bit values Y, <Y, <Ys <Yy <Y<Yy <Y, <Y

. Define the mappin ~ - - -
inden to position® - Ec((2)) = (0), B (7)) = (1), Ex((5)) = (2). ... Bx({6)) = (7)

Best possible security!

<k> = encoding of integer
k as an n-bit string

<0> <1> <2> <3> </>

L

Ex Ex Ex

l
l l |
Y, Y, Y, Y, <Y, <Y <Y<Yy <Y, <Y, <Y,

Best possible security!

<k> = encoding of integer
k as an n-bit string

<l> <l> <l> <i> <I>
C T T |

Y, <Y, <Y <Y<Yy <Y, <Y, <Y,

BeSt pOSSi ble secu rity! <k> = encoding of integer

k as an n-bit string

<0> <1> <2> <3> </>
| l | l
Yy 7 T T
| | |
Y Y Y

Y, <Y, <Y <Y<Yy <Y, <Y, <Y,

Y2 Y7 Y5 Y4 Y6)
2™\ rom Q|
Pr(m +sPerm (n) : 7((2)) < 7((7)) < 7((5)) < --- < w({4)) < 7({6))] = (5) (;i)' 8)!
@) (@28
~8l(2n —8)l(2n)!
1

8l

Best possible security!

<0> <1> <2> <3>
l l l
7 7 7
l l
Y Y

Recall that our defined BC
is over {0,1}3

<k> = encoding of integer

k as an n-bit string

Y, <Y, <Y <Y<Yy <Y, <Y, <Y,

()-8t
T

C(2M)!- (27 - 8)!

—8l(2n — 8)!1(2n)!
1

]

Best possible security!

<0> <1> <2> <3>
l l l
7 7 7
l l
Y Y

Recall that our defined BC
is over {0,1}3

Pr[# s Perm(3): #((2)) < #((7)) < #((5)) < - --

<k> = encoding of integer

k as an n-bit string

Y, <Y, <Y <Y<Yy <Y, <Y, <Y,

()-8t
T

C(2M)!- (27 - 8)!
~8I(2n — 8)!(2n)!
1
~ 38l
1

"Prefix cipher” "Cycle Walking”

Offline processing to build/store permutation, Expected # of steps <2m
fast online table-driven encryption (with overwhelming probability)
Adv2P(t,q) < AdvRP(t + O(2") + O(qb), 2°) AdviP(t,q) < Advip"(t + 0(g2™), ¢2™)
Only useful if the target domain Only useful if the target domain
is tiny compared to {0,1}" is essentially {0,1}"

What do we do for “mid-sized”
target domains?!

An important “mid-sized” target domain

1234 5678 9876 5432 »| Encrypt » 4417 1234 5678 9112

log,(10'%) = 53.15 bits to encode 16-digit decimal string

!

Need to build a 54-bit BC from (say) AES

— T~

"Prefix cipher” "Cycle Walking”
O(2°%) storage and precomputation O(27%) steps for a single encryption

Let’s take a step back...

Do we need to convert from {0,1,2,...,9}'° to bitstrings?

N o
g .
. o
N .

{0,1,2,...,9}'6

{0,1}° for b > 54

What if we could encipher {0,1,...,9}'¢ directly (more or less)?

{0,1,2,...,9}'6

One round of “Integer Feistel”

1 0o 7 6 5 5
Round function Fx: {0,1,...,9}* —{0,1,...
Fx
022
+ | < —
symbol-wise addition mod 10
6 5 5 1T 2 9

E%l) (107655) = 655129 A cipher for 6-digit decimal strings!

9}

One round of “Integer Feistel”

e.g. F(N) = AES-CBCMAC,(<N>)

F truncated to ceiling(log,(1000)) bits,
K

taken mod 1000

4|
—

symbol-wise addition mod 10

Eg) (107655) = 655129 A cipher for 6-digit decimal strings!

Round function Fx: {0,1,...,9}* —{0,1,...

One round of “Integer Feistel”

Round function Fx: {0,1,...,9}* = {0,1,...,9}°

e.g. F(N) = AES-CBCMAC,(<N>)

F truncated to ceiling(log,(1000)) bits,
K

taken mod 1000

N

symbol-wise addition mod 10

Eg) (107655) = 655129 A cipher for 6-digit decimal strings!

(See recent papers on “shuffling” by
Rogaway and others)
Notes:
(1) need multiple (many?) rounds to get good provable security
(2) easy to make this a tweakable cipher by throwing the tweak
(and maybe the round number) into the F, computation

Encrypting CCs

/The “Luhn digit” (a checksum)
1234 5678 9876 5432

e AN
The account number

Issuer Identification Number (IIN)

Encrypting CCs

Stored in the clear

/N

1234 5678 9876 5432

actually encrypted

7891876

Tweak —

(123456,5432) | Ey e.g. tweaked integer Feistel
228231

1234 5622 8231 5432 Encrypted CC

Now that we have a integer cipher...

EZKXZN%ZN

y < m
Invertible mapn: ~
% |
X rom /Yto Z]\l:p'ng EK

n

o N

An arbitrary set of objects, LN

X| < N

~

(what if m is “outside” the image of X' ?)

FE s + invertible mapping wmmp [': C x X — X a cipher over X!

Format-preserving encryption (FPE)

Bellare et al. '09]

EZKXZN%ZN

(what if m is “outside” the image of X' ?)

y < m
Invertible mapn: ~
% |
X rom /’k.to Z]\l:p'ng EK

n

o N

An arbitrary set of objects, LN

X| < N

Ej +invertible mapping \mmp F': C x X — X a cipher over X!

How to do this?
How to do it efficiently?!

i [Goldberg, Sipser ’85]
Ranking a Regular Language dberg, Sipser 85

Let L(R) be lexicographically ordered
XO< X1 < ... < X < ... < X|L(R)—1|

Language of 012 i IL(R)|-1

regular-expression R

36

i [Goldberg, Sipser ’85]
Ranking a Regular Language dberg, Sipser 85

rank(x;)=i

Let L(R) be lexicographically ordered
XO< X1 < ... < X < ... < X|L(R)—1|

Given a DFA for L(R), there are efficient algorithms

rank: L(R) — {0O,1,...,|L(R)|-1}
unrank: {0,1,...,|L(R)|-1} — L(R) With precomputed tables,

rank, unrank are O(n)

such that rank(unrank(i)) = i

and unrank(rank(x;)) = x.

37

Regular-expression based FPE

F: K x L(R) = L(R)

unrank(m)

.
JOCTCLLLLLLTEIN
. .
. .
* ‘e
. 0
. 0
0 .
‘0. .0
o
o
o
o
o
o
2
7
5
o
D
D
D
D
.
.
.
h ~
.
.
.
.
.
X 3
H
N
.
H
.
H
.
.
.

o
-
O o
.....
0 .
N .

X

any set such that X = L(R) LN
for a known regex R

Bellare et al. '09]

EI IC X n — LN
where N > |L(R)|

“rank-encrypt-unrank” FPE construction

[Bellare et al. "09]

key 1

ptxt q Integer
: > _ R
in L(R) rank cipher ctxt

unrank >
regex R n LK)
regex-to-DFA >
>

DFA D

Why do we need this?

39

How ranking works
ORNOR

Key observation: there is a 1-1 correspondence between strings in L(D)
and accepting paths in D

How ranking works
OO

Key observation: there is a 1-1 correspondence between strings in L(D)
and accepting paths in D

Step 1: establish an ordering over the alphabet of D a<b

Step 2: extend this to lexicographical ordering of
strings, one symbol at a time

Step 3: order accepting paths based on the ab < aab < abb < aaab <aabb <...
lexicographical ordering of the strings that label them

rank(X) =|[{Y € L(D): |Y] = |X| and ¥ < X}|
LY € L(D): Y] < |X|}]

How ranking works:
Precomputation

a b
algorithm BuildTable(n)
for g € @ do b -

if ¢ € F then T'[q,0] — 1
fori«—1,...,n do
for g € Q do a,b

for a € 2 do

Path length

0 1 2 3

Y9
d,
9z
s

DFA State

Tlq1,2] = # of accepting paths starting from q1 of length 2

How ranking works:

Precomputation
a b
)
algorithm BuildTable(n)
for g € Q do b a
if ¢ € F then T'[q,0] — 1
fori«—1,...,n do
for g € Q do a,b
for a € 2 do
Path length
0 1 2 3
g Y% 0
n 0
< d,
A 9% 1
ds 0

Tlq1,2] = # of accepting paths starting from q1 of length 2

How ranking works:
Precomputation

for g € @ do b
if ¢ € F then T'[q,0] — 1
fori«—1,...,n do
for g € Q do a,b
for a € X do
T(g,i] «—T[5(g,a),i — 1]
Path length
0 1 2
g Y% 0 0
v 0 1
< d,
A 9% 1 L
0 0

ds

2 b
algorithm BuildTable(n)

How ranking works:

[]
Precomputation
a b
)
algorithm BuildTable(n)
for g € @ do b .
if ¢ € F then T'[q,0] — 1
fori«—1,...,n do
for g € Q do a,b
for a € 2 do
Path length
0 1 2 3
g o 0 0 1 2
» 0 1 2 3
< d,
A 9 1 1 1 1
qs 0 0 0 0

Note: the table is of size (# states x longest string of interest)...

How ranking works:
online phase

This gives the | algorithm rank(X) Beoi H il rank to O
ral?k among edos c0; me|X] .+ Begin at the start state, set initial rank to
strings of the fori—1,...,n do
same length as X for j«1,...,ord(X[¢]) — 1 do
c - T[5(Qa a'j)’ n— Z]
q—6(q, X[t])
ret c
Path length
0 1 2 3
£ a 0 0 1 2
7 0 1 2 3
< d
L g 1 1 1 1
as 0 0 0 0

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3

9=9
c=0

This gives the —— | algorithm rank(X)

rank among , _
strings of the ;IO‘:iQ(o_,].Cj._.O’l”L g:l)ﬂ/———— For each position in the string X[1]X[2]X[3]...

same length as X for j«1,...,ord(X[i]) — 1 do
CJT[J(Qan’)’n_i]
q (g, X[i])

ret c
Path length
0 1 2 3
£ q 0 0 1 2
2 0 1 2 3
< a4
E ds 1 1 1 1
ds 0 0 0 0

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3

9d=90

c=0

=1

This giVES the — algorithm ra,nk(X)
rank among : ,
strings of the ;IO‘:iQ(o_, lc.‘.—'or,’% 75;_ X1 For each position in the string X[T]X[2]X][3]...
same length as X for j«1,...,ord(X[i]) — 1 do «— For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i over the symbols
q (g, X[i])
ret c
Path length
0 1 2 3
% o 0 0 1 2
v 0 1 2 3
< d,
A % 1 1 1 1
ds 0 0 0 0

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3

This giVES the — algorithm ra,nk(X)
rank amon , ,
strings of tl%e ;IO‘:Z_Q(O_, 1c<—07,% 75;_ X1 For each position in the string X[1]X[2]X[3]...
same length as X for j - 1, T Jord(X[i]) — 1 do For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i] over the symbols
q—6(q, X[i]) N
ret c
N
Move forward one step on the path
labeled by X Path length
0 1 2 3
§ o 0 0 1 2
v 0 1 2 3
< e b
A % 1 1 1 1
ds 0 0 0 0
rank(abb): // X[1]=a, X[2]=b, X[3]=b . 2
n=3
9= ° 4

This giVES the — algorithm ra,nk(X)
rank among , ,
strings of the ?O:iQ(o_, 1(”_07’% 75;_ “/ For each position in the string X[T]X[2]X][3]...
same length as X for j - 1, T Jord(X[i]) — 1 do For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i over the symbols
q (g, X[i])
ret c
Path length
0 1 2 3
§ o 0 0 1 2
s 0 1 2 3
< q4
A % 1 1 1 1
ds 0 0 0 0
rank(abb): // X[1]=a, X[2]=b, X[3]=b : :
n=3
q =4 ° a

c=0
a, b

This giVES the —, algorithm ra,nk(X)
rank among , ,
strings of the ?O:iQ(o_, 1(”_07’% 75;_ X1 For each position in the string X[T]X[2]X][3]...
same length as X for j - 1, T Jord(X[i]) — 1 do «+— For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i over the symbols
q (g, X[i])
ret c
Path length
0 1 2 3
§ o 0 0 1 2
s 0 1 2 3
< q4
A % 1 1 1 1
ds 0 0 0 0
rank(abb): // X[1]=a, X[2]=b, X[3]=b : :
n=3
q =4 ° a

c=0
a, b

This gives the —— | algorithm rank(X)
rank among , ,
strings of the ;IO‘:Z_Q(O_, 1c<—07,% 75;_ X1 For each position in the string X[1]X[2]X[3]...
same length as X for j - 1, T Jord(X[i]) — 1 do For each symbol < X[i] in the ordering
c << T[6(g,a;),n — 1] —0 over the symbols
q—d(q, X[i]) - Increase the rank by the # of strings of
ret ¢ length n-i that start with the smaller
symbol
Path length
0 1 2 3
§ o 0 0 1 2
» 0 1 2 3
< d,
A 9% 1 1 1 1
ds 0 0 0 0
a b
rank(abb): // X[1]=a, X[2]=b, X[3]=b : .
n=3
q =4 ? a

c=1
a, b

This gives the —— | algorithm rank(X)
rank among

: —qo; c—0; n—|X
strings of the A X1

For each position in the string X[1]X[2]X[3]...

fori<—1,...,ndo o .
same length as X for j«—1,...,ord(X[i]) — 1 do For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i over the symbols
q—d(q, X[i]) Increase the rank by the # of strings of

ret ¢ \ length n-i that start with the smaller

TN
Move forward symbol
Path length
0 1 2 3
% do 0 0 L 2
77
d4 0 1 2 3
=
A 9 1 ! 1 1
qas 0 0 L 0
n o
rank(abb): // X[1]=a, X[2]=b, X[3]=b a b
n=3
q=9 i ’

c=1
a, b

This gives the —— | algorithm rank(X)
rank among , , o _
strings of the ?O:iQ(O_,ICT.—'O;L 'f(?i;— “—— For each position in the string X[1]X[2]X[3]...
same length as X for j«—1,...,ord(X[i]) — 1 do For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i over the symbols
q—d(q, X[i]) Increase the rank by the # of strings of
ret c length n-i that start with the smaller
Move forward symbol
Path length
0 1 2 3
§ o 0 0 1 2
v 0 1 2 3
< e b
A 9% 1 1 1 1
ds 0 0 0 0
a b
rank(abb): // X[1]=a, X[2]=b, X[3]1=b . .
n=3
q=0 ? a

c=1
a, b

This gives the —— | algorithm rank(X)
rank among , , o _
strings of the ?O‘:Z_q(o_’ lc.‘._'o;% "(’i;_ X1 For each position in the string X[11X[2]1X[3]...
same length as X for j«1,...,ord(X[i]) — 1 do «— For each symbol < X[i] in the ordering
c < T[6(q,a;),n — i over the symbols
q—d(q, X[i]) Increase the rank by the # of strings of
ret c length n-i that start with the smaller
Move forward symbol
Path length
0 1 2 3
§ o 0 0 1 2
v 0 1 2 3
< e b
A 9% 1 1 1 1
ds 0 0 0 0
a b
rank(abb): // X[1]=a, X[2]=b, X[3]1=b . .
n=3
q=0 ? a

c=1
a, b

This gives the —— | algorithm rank(X)
rank among , , o _
strings of the ?O‘:Z_q(o_’ lc.‘._'o;% "(’i;_ X1 For each position in the string X[11X[2]1X[3]...
same length as X for j«—1,...,ord(X[i]) — 1 do For each symbol < X[i] in the ordering
c << T[6(g,a;),n — 1] —0 over the symbols
q—d(q, X[i]) | Increase the rank by the # of strings of
ret c length n-i that start with the smaller
Move forward symbol
Path length
0 1 2 3
§ o 0 0 1 2
v 0 1 2 3
< e b
A 9% 1 1 1 1
ds 0 0 0 0
a b
rank(abb): // X[1]=a, X[2]=b, X[3]1=b . .
n=3
q=0 ? a

c=1
a, b

This gives the — | algorithm rank(X)
rar.1k among g—gqo; c—0; n—|X|
strings of the fori«1,...,n do
same length as X for j«—1,...,ord(X[i]) — 1 do
cet T[a(q’ a'j)’ n— ’L]
q—6(g, X[i])
ret c
Path length
0 1 2 3
£ 0 0 1 2
7 0 1 2 3
< d,
L g, 1 1 1 1
qs 0 0 0 0

The rank of abb among length-3 strings is 1,
i.e. there is one length-3 string in L(D) that is “less than” abb

This gives the — | algorithm rank(X)
rar.1k among g—gqo; c—0; n—|X|
strings of the fori<1,...,n do
same length as X for j«—1,...,ord(X[i]) — 1 do
cet T[(S(q, a'j)’ n— ’L]
q (g, X[i])
ret c
Path length
0 1 2 3
£ a 0 0 : 2
7 0 1 2 3
< d,
L g, 1 1 1 1
qs 0 0 0 0

The rank of abb among length-3 strings is 1,
i.e. there is one length-3 string in L(D) that is “less than” abb

... and there is one string in L(D) of length less than 3

This gives the — | algorithm rank(X)
rar.1k among g—gqo; c—0; n—|X|
strings of the fori<1,...,n do
same length as X for j«—1,...,ord(X[i]) — 1 do
cet T[a(q’ a'j)’ n— ’L]
q (g, X[i])
ret c
Path length
0 1 2 3
£ a 0 0 1 2
7 0 1 2 3
< d,
L g, 1 1 1 1
qs 0 0 0 0

The rank of abb among length-3 strings is 1,
i.e. there is one length-3 string in L(D) that is “less than” abb

... and there is one string in L(D) of length less than 3

rank(abb) = 2

“rank-encrypt-unrank” FPE construction

key 1
ptxt q Inte
: ger
n LR) rank cipher
regex R

But why not rank directly from the regex,

regex-to-DFA

DFA D

unrank

instead of converting to an equivalent DFA first?

Come back Thursday.

S ctxt
in L(R)

60

Ciphers Over “Strange” Domains

Prefix
Cipher

Cycle-
walking
Cipher

FPE

n-bit BC == (n-m)-bit BC for large m

n-bit BC = (n-m)-bit BC for small m

n-bit BC w=s cipher over arbitrary regular language

Ciphers Over “Strange” Domains

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

U Herbert Wertheim
College of Engineering

Department of Computer & Information
Science & Engineering

UNIVERSITY of FLORIDA

