
Ciphers Over “Strange” Domains

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

In-place encryption of CC database

“Looks benign,
let it pass”.

Encrypt

“HTTP: … free+speech+democracy …”

TCP/IP ciphertext payload

Circumvention of nation-state internet censorship

1234 5678 9876 5432 4417 1234 5678 9112Encrypt

Deep-packet inspection (DPI)

Today

Thursday

Blockcipher basics

E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n for fixed k, n > 0Traditional blockcipher syntax

”function family” viewpoint

where 8K 2 {0, 1}k, E(K, ·) is a bijection

{EK : {0, 1}n ! {0, 1}n |K 2 {0, 1}k}
where EK

4
= E(K, ·)

Perm(n)
EK

(All permutations over {0,1}n)

PRP-security notion

⇡ sampled uniformly

sampled from function
family by picking a key K

No efficient test can
distinguish these

Turning an n-bit BC into an (n-1)-bit BC

EK

n bits n bits

EK

n-1 bits n-1 bits~

Turning an n-bit BC into an (n-1)-bit BC

EK

n bits n bits

EK

n-1 bits n-1 bits~

Idea #1: truncation!

˜EK(X)

4
= (n� 1) LSB of EK(X)

Turning an n-bit BC into an (n-1)-bit BC

EK

n bits n bits

EK

n-1 bits n-1 bits~

Idea #1: truncation!
˜EK(X)

4
= (n� 1) LSB of EK(0 ||X)

Turning an n-bit BC into an (n-1)-bit BC

EK

n bits n bits

EK

n-1 bits n-1 bits~

How do we invert?Ẽ�1
K (Y)

4
= . . .

Idea #1: truncation!
˜EK(X)

4
= (n� 1) LSB of EK(0 ||X)

Turning an n-bit BC into an (n-1)-bit BC

EK

n bits n bits

EK

n-1 bits n-1 bits~

˜E�1
K (Y)

4
= if E�1

K (0 kY) = 0 kX, return X; otherwise E�1
K (1 kY) = 0 kX, return X

Idea #1: truncation!
˜EK(X)

4
= (n� 1) LSB of EK(0 ||X)

Turning an n-bit BC into an (n-1)-bit BC

EK

n bits n bits

EK

n-1 bits n-1 bits~

Does it work?!

Idea #1: truncation!

˜E�1
K (Y)

4
= if E�1

K (0 kY) = 0 kX, return X; otherwise E�1
K (1 kY) = 0 kX, return X

˜EK(X)

4
= (n� 1) LSB of EK(0 ||X)

Turning an n-bit BC into an (n-1)-bit BC

Let’s consider a
simple example, n=2

EK : 00 7! 01

01 7! 11

10 7! 10

11 7! 00

ẼK : 0 7! 1

1 7! 1

˜E�1
K (Y)

4
= if E�1

K (0 kY) = 0 kX, return X; otherwise E�1
K (1 kY) = 0 kX, return X

˜EK(X)

4
= (n� 1) LSB of EK(0 ||X)

Turning an n-bit BC into an (n-m)-bit BC

EK

0m X

YU If U=0m then return Y

Turning an n-bit BC into an (n-m)-bit BC

EK

0m X

EK

YU If U=0m then return Y

Turning an n-bit BC into an (n-m)-bit BC

EK

0m X

EK

If U=0m then return Y

EK

YU

”Cycle Walking”

EK

0m X

EK

EK

YU

Z1

Z0 = 0m kX

Z2Z1

Z2

Z0

”Cycle Walking”

EK

0m X

EK

EK

YU

Z1

Z0 = 0m kX

Z2Z1

Z2

Z0

”Cycle Walking”

EK

0m X

EK

EK

YU

Z1

Z0 = 0m kX

Z2Z1

Z2

Expected # of steps ≤ 2m

Z0

”Cycle Walking”

Expected # of steps ≤ 2m

Security?

(in fact, Chernoff-like bounds show #steps close to
expectation with overwhelming probability)

(with overwhelming probability)

Clearly, this method is useful only if
m is small, i.e. (n-m) is “close” to n

Advprp

Ẽ
(t, q)  Advprp

E (t+O(q2m), q2m)

What about when you want to shrink
the domain a lot?

Say you want a 3-bit BC

EK

<1>

Y1

EK

<0>

Y0

EK

<2>

Y2

EK

<3>

Y3

EK

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

1. Encipher the entire
3-bit domain

What about when you want to shrink
the domain a lot?

Say you want a 3-bit BC

EK

<1>

Y1

EK

<0>

Y0

EK

<2>

Y2

EK

<3>

Y3

EK

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

1. Encipher the entire
3-bit domain

2. Sort the resulting
n-bit values Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

What about when you want to shrink
the domain a lot?

Say you want a 3-bit BC

EK

<1>

Y1

EK

<0>

Y0

EK

<2>

Y2

EK

<3>

Y3

EK

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

1. Encipher the entire
3-bit domain

2. Sort the resulting
n-bit values

3. Define the mapping
”index to position” ẼK(h2i) = h0i, ẼK(h7i) = h1i, ẼK(h5i) = h2i, . . . , ẼK(h6i) = h7i

Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

Best possible security!

<1>

Y1

<0>

Y0

<2>

Y2

<3>

Y3

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

EK EK EK EK EK

Best possible security!

<1>

Y1

<0>

Y0

<2>

Y2

<3>

Y3

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

⇡ ⇡ ⇡ ⇡ ⇡

Pr [⇡ $ Perm (n) : ⇡(h2i) < ⇡(h7i) < ⇡(h5i) < · · · < ⇡(h4i) < ⇡(h6i)] = ?

Y2 Y7 Y5 Y4 Y6

Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

Best possible security!

<1>

Y1

<0>

Y0

<2>

Y2

<3>

Y3

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

⇡ ⇡ ⇡ ⇡ ⇡

Y2 Y7 Y5 Y4 Y6

Pr [⇡ $ Perm (n) : ⇡(h2i) < ⇡(h7i) < ⇡(h5i) < · · · < ⇡(h4i) < ⇡(h6i)] =
�2n

8

�
· (2n � 8)!

(2n)!

=
(2n)! · (2n � 8)!

8!(2n � 8)!(2n)!

=
1

8!

Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

Best possible security!

<1>

Y1

<0>

Y0

<2>

Y2

<3>

Y3

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

⇡ ⇡ ⇡ ⇡ ⇡

Y2 Y7 Y5 Y4 Y6

Pr [⇡ $ Perm (n) : ⇡(h2i) < ⇡(h7i) < ⇡(h5i) < · · · < ⇡(h4i) < ⇡(h6i)] =
�2n

8

�
· (2n � 8)!

(2n)!

=
(2n)! · (2n � 8)!

8!(2n � 8)!(2n)!

=
1

8!
Recall that our defined BC
is over {0,1}3

Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

Pr [⇡̃ $ Perm(3) : ⇡̃(h2i) < ⇡̃(h7i) < ⇡̃(h5i) < · · · < ⇡̃(h4i) < ⇡̃(h6i)] = 1

8!

Best possible security!

<1>

Y1

<0>

Y0

<2>

Y2

<3>

Y3

<7>

Y7

…

<k> = encoding of integer
k as an n-bit string

⇡ ⇡ ⇡ ⇡ ⇡

Y2 Y7 Y5 Y4 Y6

Pr [⇡ $ Perm (n) : ⇡(h2i) < ⇡(h7i) < ⇡(h5i) < · · · < ⇡(h4i) < ⇡(h6i)] =
�2n

8

�
· (2n � 8)!

(2n)!

=
(2n)! · (2n � 8)!

8!(2n � 8)!(2n)!

=
1

8!
Recall that our defined BC
is over {0,1}3

Y2 < Y7 < Y5 < Y3 < Y0 < Y1 < Y4 < Y6

”Cycle Walking”

Expected # of steps ≤ 2m

(with overwhelming probability)

Only useful if the target domain
is essentially {0,1}n

”Prefix cipher”

Offline processing to build/store permutation,
fast online table-driven encryption

Only useful if the target domain
is tiny compared to {0,1}n

Advprp

Ẽ
(t, q)  Advprp

E (t+O(q2m), q2m)Advprp

Ẽ
(t, q)  Advprp

E (t+O(2b) +O(qb), 2b)

What do we do for “mid-sized”
target domains?!

An important “mid-sized” target domain

1234 5678 9876 5432 4417 1234 5678 9112Encrypt

log2(1016) = 53.15 bits to encode 16-digit decimal string

Need to build a 54-bit BC from (say) AES

”Cycle Walking””Prefix cipher”
O(254) storage and precomputation O(274) steps for a single encryption

Do we need to convert from {0,1,2,…,9}16 to bitstrings?

{0,1}b for b ≥ 54

ẼK

< x >

< y >

{0,1,2,…,9}16

x

y

What if we could encipher {0,1,…,9}16 directly (more or less)?

Let’s take a step back…

{0,1,2,…,9}16

x

y
ẼK

FK

+
symbol-wise addition mod 10

1 0 7 6 5 5

6 5 5 1 2 9

One round of “Integer Feistel”

Round function FK : {0, 1, . . . , 9}⇤ ! {0, 1, . . . , 9}3

Ẽ(1)
K (107655) = 655129

0 2 2

A cipher for 6-digit decimal strings!

FK

+
symbol-wise addition mod 10

e.g. FK(N) = AES-CBCMACK(<N>)
truncated to ceiling(log2(1000)) bits,
taken mod 1000

1 0 7 6 5 5

6 5 5 1 2 9

One round of “Integer Feistel”

Round function FK : {0, 1, . . . , 9}⇤ ! {0, 1, . . . , 9}3

Ẽ(1)
K (107655) = 655129 A cipher for 6-digit decimal strings!

0 2 2

FK

+
symbol-wise addition mod 10

1 0 7 6 5 5

6 5 5 1 2 9

One round of “Integer Feistel”

Round function FK : {0, 1, . . . , 9}⇤ ! {0, 1, . . . , 9}3

Ẽ(1)
K (107655) = 655129 A cipher for 6-digit decimal strings!

Notes:
(1) need multiple (many?) rounds to get good provable security
(2) easy to make this a tweakable cipher by throwing the tweak

(and maybe the round number) into the FK computation

(See recent papers on ”shuffling” by
Rogaway and others)

0 2 2

e.g. FK(N) = AES-CBCMACK(<N>)
truncated to ceiling(log2(1000)) bits,
taken mod 1000

Encrypting CCs

1234 5678 9876 5432

Issuer Identification Number (IIN)

The “Luhn digit” (a checksum)

The account number

Encrypting CCs

1234 5678 9876 5432

Stored in the clear

actually encrypted

EK
~Tweak

(123456,5432)

789876

228231

1234 5622 8231 5432 Encrypted CC

e.g. tweaked integer Feistel

Now that we have a integer cipher…

ẼK

n

m

x

y

Ẽ : K ⇥ ZN ! ZN

X

|X |  N

ZNAn arbitrary set of objects,

X ZN

(what if m is “outside” the image of ?)X

F̃ : K ⇥ X ! XẼK + invertible mapping a cipher over !X

Format-preserving encryption (FPE)

ẼK

n

m

x

y

Ẽ : K ⇥ ZN ! ZN

X

|X |  N

ZNAn arbitrary set of objects,

X ZN

(what if m is “outside” the image of ?)X

F̃ : K ⇥ X ! XẼK + invertible mapping a cipher over !X

[Bellare et al. ’09]

How to do this?
How to do it efficiently?!

L(R)

Ranking a Regular Language

0 1 2 |L(R)|-1i

Let L(R) be lexicographically ordered
x0< x1 < … < xi < … < x|L(R)-1|

xi

[Goldberg, Sipser ’85]
[Bellare et al. ’09]

36

Language of
regular-expression R

L(R)

Ranking a Regular Language

0 1 2 |L(R)|-1i

Let L(R) be lexicographically ordered
x0< x1 < … < xi < … < x|L(R)-1|

xi

x2

rank(xi)=i

unrank(2)=x2

With precomputed tables,
rank, unrank are O(n)

[Goldberg, Sipser ’85]
[Bellare et al. ’09]

rank: L(R) {0,1,…,|L(R)|-1}
unrank: {0,1,…,|L(R)|-1} L(R)

such that rank(unrank(i)) = i
and unrank(rank(xi)) = xi

Given a DFA for L(R), there are efficient algorithms

37

Regular-expression based FPE

ẼK

n

m

x

y

Ẽ : K ⇥ ZN ! ZN

X
ZNany set such that

for a known regex R

[Bellare et al. ’09]

unrank(m)

X = L(R)

where N ≥ |L(R)|

F̃ : K ⇥ L(R) ! L(R)

“rank-encrypt-unrank” FPE construction

integer
cipher

unrank
regex-to-DFA

rank

key

ptxt
in L(R)

ctxt
in L(R)regex R

39

Why do we need this?

[Bellare et al. ’09]

DFA D

How ranking works

Key observation: there is a 1-1 correspondence between strings in L(D)
and accepting paths in D

q0 q1 q2

q3

How ranking works

Key observation: there is a 1-1 correspondence between strings in L(D)
and accepting paths in D

Step 1: establish an ordering over the alphabet of D a < b

Step 2: extend this to lexicographical ordering of
strings, one symbol at a time

Step 3: order accepting paths based on the
lexicographical ordering of the strings that label them

ab < aab < abb < aaab < aabb < …

q0 q1 q2

q3

rank(X) =|{Y 2 L(D) : |Y | = |X| and Y < X}|
+ |Y 2 L(D) : |Y | < |X|}|

How ranking works:
Precomputation

0 1 2 3
q0

q1

q2

q3

q0 q1 q2

q3

T[q1,2] = # of accepting paths starting from q1 of length 2

Path length

D
FA

 S
ta

te

0 1 2 3
q0 0
q1 0
q2 1
q3 0

q0 q1 q2

q3

T[q1,2] = # of accepting paths starting from q1 of length 2

Path length

D
FA

 S
ta

te

How ranking works:
Precomputation

0 1 2 3
q0 0 0
q1 0 1
q2 1 1
q3 0 0

q0 q1 q2

q3

Path length

D
FA

 S
ta

te

How ranking works:
Precomputation

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

q0 q1 q2

q3

Path length

D
FA

 S
ta

te

Note: the table is of size (# states x longest string of interest)…

How ranking works:
Precomputation

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

Begin at the start state, set initial rank to 0

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q0
c = 0

How ranking works:
online phase

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q0
c = 0
i = 1

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q0
c = 0
i = 1

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q1
c = 0
i = 1

Move forward one step on the path
labeled by X

q0 q1 q2

q3

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q1
c = 0
i = 2

q0 q1 q2

q3

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q1
c = 0
i = 2

q0 q1 q2

q3

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q1
c = 1
i = 2

q0 q1 q2

q3

Increase the rank by the # of strings of
length n-i that start with the smaller
symbol

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q2
c = 1
i = 2

q0 q1 q2

q3

Increase the rank by the # of strings of
length n-i that start with the smaller
symbolMove forward

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q2
c = 1
i = 3

q0 q1 q2

q3

Increase the rank by the # of strings of
length n-i that start with the smaller
symbolMove forward

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q2
c = 1
i = 3

q0 q1 q2

q3

Increase the rank by the # of strings of
length n-i that start with the smaller
symbolMove forward

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

For each position in the string X[1]X[2]X[3]…

For each symbol < X[i] in the ordering
over the symbols

rank(abb): // X[1]=a, X[2]=b, X[3]=b
n=3
q = q2
c = 1
i = 3

q0 q1 q2

q3

Increase the rank by the # of strings of
length n-i that start with the smaller
symbolMove forward

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

The rank of abb among length-3 strings is 1,
i.e. there is one length-3 string in L(D) that is “less than” abb

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

The rank of abb among length-3 strings is 1,
i.e. there is one length-3 string in L(D) that is “less than” abb

… and there is one string in L(D) of length less than 3

0 1 2 3
q0 0 0 1 2
q1 0 1 2 3
q2 1 1 1 1
q3 0 0 0 0

Path length

D
FA

 S
ta

te

This gives the
rank among
strings of the
same length as X

The rank of abb among length-3 strings is 1,
i.e. there is one length-3 string in L(D) that is “less than” abb

rank(abb) = 2

… and there is one string in L(D) of length less than 3

“rank-encrypt-unrank” FPE construction

integer
cipher

unrank
regex-to-DFA

rank

key

ptxt
in L(R)

ctxt
in L(R)regex R

60

DFA D

But why not rank directly from the regex,
instead of converting to an equivalent DFA first?

Come back Thursday.

Ciphers Over “Strange” Domains

n-bit BC (n-m)-bit BC for large m Prefix
Cipher

n-bit BC (n-m)-bit BC for small m Cycle-
walking
Cipher

n-bit BC FPE cipher over arbitrary regular language

Ciphers Over “Strange” Domains

Tom Shrimpton

Florida Institute for Cybersecurity Research
University of Florida

